Click the blue text to follow us.

本文作者:Geoff Ballew





当前我们对图像传感器的依赖程度超出了大多数人的想象。图像传感器应用在汽车上,帮助我们避免碰撞;应用于建筑监控,防止非法入侵;应用于生产线,检查产品的质量。有趣的是,人们经常按照像素大小和分辨率等非常简单的指标,对图像传感器进行分类,但为不同应用选择合适的传感器要比这复杂得多。





分辨率


我们依赖传感器来探测危险,或检测产品中的缺陷,因而传感器的图像质量至关重要。系统设计人员和最终用户通常认为,更高的分辨率(即图像中的像素更多)可以增强图像质量,但情况并非总是如此。更高的分辨率固然可以保留图像的锐化边缘和精细细节,有助于进行目标识别,但也有其他一些因素需要考虑。更高的分辨率会对一些关键参数造成不利影响,比如捕获速度/帧率、传感器尺寸和传感器功耗。它还会影响其他一些系统因素,例如更大的图像需要更高的带宽、存储空间和处理能力。如果必须达到更高的分辨率,那么减小像素大小可以维持镜头和摄像机尺寸,以达到成本和尺寸目标,同时增强图像质量。


人们常以为需要增加尽可能多的像素,而不考虑这决策对成本和系统性能的影响。每当新项目启动时,首先应进行全面的需求分析,需要考虑产品的最终用途、核心参数及各种约束条件,例如镜头和机身的物理尺寸、功率等限制因素。这样可以确保传感器更符合您的应用需求,不会因过早依据分辨率而缩小选择面。

关于图像传感器图像质量的四大误区!你踩过几个坑?

关于图像传感器图像质量的四大误区!你踩过几个坑?

图 1. 使用 1/1.5 英寸 540 万像素 3 µm 分立二极管传感器之前的分辨率


关于图像传感器图像质量的四大误区!你踩过几个坑?关于图像传感器图像质量的四大误区!你踩过几个坑?

图 2. 使用 1/1.8 英寸 830 万像素 2.1 µm 超级曝光传感器之后的分辨率




电源


图像传感器的性能还在很大程度上取决于其他系统组件,这些组件可能不在光路上,甚至不是传感器的一部分,因而可能不太起眼。而设计人员可能就在这些不太起眼的方面做出了妥协,例如电源的设计。这种妥协会降低图像质量,因为来自电源组件的电噪声可能导致各种图像缺陷,可能是某些细微的缺陷,也可能是每个观看者都会注意到的明显缺陷,但他们可能并不知道缺陷的起因。


实质上,图像传感器就是光子计数器。在微光条件下,光子数量较低,因而系统中的任何“噪声”在图像中表现得更为明显。来自电源的电压尖峰或电压瞬变可能导致最终的图像输出存在缺陷。虽然传感器的设计允许电源电压在容差范围内波动,但一旦出现超出这个范围的偏差,就会影响图像质量。因此,供电的质量是摄像系统设计中的一个至关重要的因素




噪声源


器件在测量光照时不出现任何误差或偏差只存在于理想情况中;在现实中,传感器芯片中的电路会遇到不同的噪声源,影响每个像素的信号电平,进而影响最终图像中的像素。一般来说,使用最新传感器可以很好地控制读出噪声,但另一种名为暗信号非均匀性 (DSNU) 的噪声源带来了更大的挑战。


在完全黑暗的条件下拍摄图像时,会出现 DSNU 噪声源:由于场景是完全黑暗的,理应完全没有信号,但有些电子会出现异常行为,它们被算作由入射光引起的,造成图像不是完全黑色的。如果每个像素都有这种情况,可以减去这些噪声,就好比您在编辑一张照片时,让整个图像都变得暗一点。但如果这种噪声在像素阵列上不是均匀分布的,就会出现问题,因而 DSNU 是衡量像素阵列差异大小的指标,而随着传感器温度升高,这个问题会变得更严重。


由于会受温度影响,传感器可能在有空调的实验室内测试结果良好,但在户外的炎热环境下,表现得不尽如人意。炎热的夜间环境对控制 DSNU 带来了极大的挑战,由于没有太多的有效信号,这种噪声源将变得更加明显。为了解决这个问题,应在系统常规工作的温度范围内和不同光照条件下,对任何传感器进行测量。如果仅根据室温环境中的测试来选择图像传感器,则在温度升高时,可能遇到意外情况。



关于图像传感器图像质量的四大误区!你踩过几个坑?





信噪比 (SNR)


信噪比的英文缩写为 SNR,定义为信号功率与噪声功率的平均比率。无论噪声多大,如果信噪比非常高,则噪声对图像的影响会小得多。这就好比餐馆账单上的错误。如果您只点了一杯咖啡,多 3 美元就很容易发现,但如果是一大群人用餐,账单金额达到几百美元,您可能不会注意到多出的费用,因为它占总金额的百分比非常小,即使在两种情况下都是 3 美元。同样,如果信号来自数千个光子,就算多几个光子,您可能也不会注意到多出的信号。


再回到图像传感器,如果您的图像包含亮光区域和暗光区域,您将在某些区域发现更多噪声。出人意料的是,这些噪声可能不在图像的暗光部分,而可能在“中光”区域。在低光向亮光转换的过渡区域,仍然存在一些设计限制。要在不引入技术细节的情况下解释清楚这一点不太容易,但我们可以将它比作自行车上的齿轮以便理解。如果您有一辆10速自行车,它会带有一个针对低速优化的齿轮和一个针对最高速优化的齿轮,两者之间还有很多档位。假定自行车只有最高速齿轮、中速齿轮、最低速齿轮:您将拥有适用于慢速(低光)、中速(中光)、快速(亮光)骑行的合适齿轮,但从低速到中速、从中速到高速的转换则不会太舒适,在骑行的某些路段,您会发现这些缺少的齿轮很重要。


有些制造商常将平均信噪比当作图像传感器的主要指标,特意选择信噪比良好区域的性能统计数据,暗示这些数据代表了所有光照条件下的整体图像质量。这就类似于上述示例中的自行车制造商将 3 速自行车的平均齿轮比数据用到10速自行车上。中速齿轮约为所有3个档位的平均值,但从低速到中速、从中速到高速的转换存在很大的空白,现有的3个齿轮都不是理想的选择。设计人员必须知道这一点,不要受到“平均”信噪比的蒙蔽。解决方法是在所需的各种不同光照条件下,对传感器进行测试,并且测量整个范围内的信噪比,看看您是否会受到“自行车缺少齿轮”的影响。







简而言之,如果图像质量对于您的图像传感器应用至关重要,您必须避开一些潜在的陷阱。对分辨率和噪声影响所做的假设必须通过测试加以验证,从而确保在最终系统设计中不出意外。


⭐点个星标,茫茫人海也能一眼看到我⭐

关于图像传感器图像质量的四大误区!你踩过几个坑?


关于图像传感器图像质量的四大误区!你踩过几个坑?

别着急走,记得点赞and在看
关于图像传感器图像质量的四大误区!你踩过几个坑?

原文始发于微信公众号(安森美):关于图像传感器图像质量的四大误区!你踩过几个坑?

For more industry information about car cameras, please join the AiBang Car Camera Exchange Group. Upstream and downstream companies in the industry chain such as SAIC, Great Wall, Geely, BYD, Desay SV, Huayang, Visteon, Continental, Bosch, Hangsheng, Shunyu, O-film, Lens Technology, Phoenix Optical, Crystal Optoelectronics, Sunex, Ames, Howay, Han's, 3M, Nichia, and Rohm Chemical have all joined. Scan the QR code below to join the discussion.
瑞萨电子与豪威科技合作汽车摄像头系统集成
  Welcome to join us.AiBang Camera CommunicationRecording, currently with 3700 participants, including major car camera manufacturers and OEM leaders. You can click on the keywords below to view in English.  

Download:

en_USEnglish