关键词: 光心偏置 CMS 电子后视镜 视野Layout, CMSSim
1、什么是光心偏置技术
通常我们在设计摄像头模组的时候, 会将Lens的畸变中心(COD)布置在Sensor的Active array center处, 以追求一个尽量对称的FOV, 通常Active Alignment(AA) 对焦组装工艺会将最终的光心误差控制在几十um以内.
光心偏置技术是设计时有意通过调整Lens COD和Sensor Active array center不重合的一种设计方法, 在CMS摄像头特别是商用车II/IV类CMS共用FOV的设计中较为多见. 如下图示意.
2、光心偏置技术的特点
通常,通过光心偏置, 摄像机模组会产生一个非对称的FOV, 如下图所
光心偏置方向的FOV被收窄, 同时畸变也变小.远离光心偏置方向的FOV被放大, 同时畸变也变大。
3、II/IV类CMS共用FOV的设计
在GB15084-2022中, 对于II类及IV类装置的视野要求见下图:
4、常规设计面临的问题
下图是一个常规II/IV类共Camera设计的法规要求视野在一个转置的OX03F (1536*1920)输出的模组Sensor表面的CMSSim模拟图。
1)II类法规要求视野远离光心造成II类法规视野的清晰度下降
从II/IV类视野混合模拟图中,我们可以发现, II类视野远离光心并处于相机FOV的边缘, 部分视野甚至超出了0,7FOV, 一般相机在0,7F位置的MTF只有中心处MTF的70%, 而II类视野往往要裁切后放大到720*1280的屏幕上显示, 这就造成II类视野的显示效果非常模糊, 严重降低产品体验。
2)II类法规要求视野远离光心造成II类法规视野的畸变,最小放大倍率等指标下降
II类视野偏离光心, 我们知道Lens畸变是以光心COD为中心的同心圆, 越是远离COD, 畸变量越大. 这就造成了II类视野区域受畸变影响较大的畸变最小放大倍率等指标严重下降。
由于IV类法规要求视野分布在车身一侧约45度大范围的一片区域, 我们在布置相机时, 会优先将相机进行一定度数的偏航及下俯, 以使相机大致覆盖整个IV类法规要求区域, 见下图.
相机经过偏航后, 相机光轴与天地线及车身线之间已经不是正交, 造成投影后角度变化, 这个变形幅度会随着相机的偏航角增大而增大.
4)法规要求视野变形影响将增大模组FOV
如下图所示, 视野变形后(黑色区域), 我们必须选用更大FOV的Lens才能覆盖整个IV类法规视野.这会导致我们裁切填充II类显示区域时可用的有效像素不足, 降低II类显示区域的分辨率。
5、光心偏置技术如何解决上述问题
针对传统Layout方式带来的各种问题, 我们看看光心偏置技术是如何解决以上弊端的。
光心偏置之后, 光心可以更靠近II类法规要求视野, 有效提升II类显示区域的各项指标。
光心偏置后, 相机姿态基本可保持与车身平行向车后方向, 这也改善了法规要求视野的变形, 见下图.
同时, 基于不变形的IV类视野, 我们可以选用更小角度FOV的Lens, 提升II类视野的显示区域的显示质量.
6、光心偏置技术带来的问题
事情总是具有两面性, 光心偏置给视野Layout带来以上优点的同时, 也会存在以下课题:
-
光心偏置会要求Lens有足够的像高
光心偏置以后, 由光心到Sensor边缘的最大像高将大幅增大, 这也带来一系列问题和风险, 比如暗角问题, CRA匹配问题, 这需要在模组设计的时候, 进行充分的评估, 并作出正确的应对.
-
光心偏置会带来模组加工的难度
光心偏置后, Lens可能不再处于Sensor的光学中心, 这将对模组AA工艺产生一系列的影响, 比如AA机台的设置, 不均匀胶缩引起的误差等.
总结:
识别二维码,关注CMSSim公众号
The original article was posted on the WeChat official account "Smart Car Club."The application of optical center bias in the layout of E-mirrors.
With the imminent relaxation of regulations on electronic rearview mirrors, how can mass production details such as anti-glare, anti-fog defrosting, distortion correction, and transmission rate be improved? You are welcome to join the Ebang Automotive Electronic Rearview Mirror CMS discussion group to discuss with industry professionals from Huayang, BOE Precision Electronics, Guangzhou Rongsheng, Zixing Technology, Qingdao Jidong, Hansion, Xinyang Rongle, Yuanfeng Technology, Sunny Optical, OFILM, Q-Tech, Heli-Tech, United Optoelectronics, Tianshi Precision, Xinxin, Jinkang Optoelectronics, Howell, and others.Please forward this article before joining the group.