(报告出品方/作者:开源证券,任浪)

 

1、 迈向高阶自动驾驶,汽车之“眼”激光雷达为优中之选

1.1、 自动驾驶向高阶演进,感知器件先行

智能化推动行业变革,跨界融合频现,高阶自动驾驶拐点将至。汽车“电动化、智能 化、网联化、共享化”的趋势已经成为行业共识。其中,智能化技术包括搭载先进传 感器等装置提高智能驾驶水平、运用 AI 增强人机交互体验等。智能化的普及推动汽 车由传动的出行工具向智能移动空间演进,是当前汽车产业发展的主要方向。特斯 拉引领的汽车电子电气架构、软件架构和通信价格的升级,使得汽车智能化升级的 方式由“累加 ECU”转向算力和数据模型的持续迭代升级。汽车智能化升级的边际 成本递减使得自动驾驶在 L3 以后升级的速度将加速。同时软件定义汽车带来的软件 收费模式以及汽车软件生态圈的逐步建立使得汽车行业由传统制造业向科技行业转 型升级。智能汽车也吸引了众多互联网厂商和手机厂商等纷纷入局,或自身下场造 车,或与传统主机厂跨界合作。例如,华为基于深厚的 ICT 技术提供完整的智能汽 车解决方案,发布高性能 MDC 智能驾驶计算平台、激光雷达与多合一电驱动系统等 核心零部件,赋能智能汽车领域的发展。百度、阿里、腾讯、字节跳动、滴滴、小米、 大疆、OPPO 等亦宣布加入智能汽车行业。纵观各大整车厂的推进节奏,特斯拉、大 众、福特、蔚来、理想、小鹏、上汽、长城等等,均已计划自 2021 年开始布局 L3 及 以上高阶自动驾驶,L3 级自动驾驶升级的元年即将到来。

 

激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

 

感知作为智能驾驶的先决条件,其探测精度、广度与速度直接影响智能驾驶的行驶 安全。智能驾驶将汽车的驾驶能力及驾驶责任逐步由人转移到汽车,其主要包括感 知、决策和执行三大核心环节。其中,感知环节相当于人的眼睛和耳朵,主要通过车 载摄像头、激光雷达、毫米波达等各类车载传感器在行车过程中完成对环境及车辆 的感知、搜集周围环境数据并将其传输到决策层;决策环节相当于人的大脑,主要通 过操作系统、芯片与计算平台等对接收到的数据进行实时处理并输出相应的操作与 指令任务;执行端则相当于人的四肢,将接收到的操作指令执行到动力供给、方向控 制、车灯控制等车辆终端部分。综上所述,感知环节作为智能驾驶的先决条件,其探 测精度、广度与速度将直接影响决策层的判断与执行层的操作,在智能驾驶中的地 位至关重要。

 

1.2、 纯视觉+算法方案壁垒高筑,特斯拉一枝独秀

单一传感器难以满足智能驾驶全场景需要,多传感器融合方案成为主流。车载传感 器是感知环节的重要组成部分,主要包括车载摄像头、激光雷达、毫米波雷达、超声 波雷达等。其中,车载摄像头成像清晰,成本低,但探测距离短,对环境光照要求较 高,识别稳定性欠佳。毫米波雷达通过测量回波的时间差算出距离,其优势有探测性 能稳定、作用距离长、可穿透烟、雾等,具有全天候、全天时的特点,但受分辨率限 制,难以分辨近距离物体,无法识别行人。超声波雷达测距方式与毫米波雷达相似, 区别于应用波为超声波,其在短距离测距中具有显著优势,成本较低,但短于长距离 测量,且易受天气影响,仅在泊车系统中的应用较为广泛。激光雷达精度较高,探测 距离远,可在夜间使用,但目前仍在存在成本较高、在雾霾和雨雪等恶劣天气下探测 受限等问题。单一的车载传感器难以同时保障探测精度、距离,且无法摆脱对环境的 依赖,因此,多传感器融合已成为主流趋势。该方案在车身四周及顶部配置多类传感 器,可有效保证传感器工作实时性及稳定性,大幅提升探测精度与距离。

 

激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

视觉方案所获数据与人眼感知的真实世界更为相似,轻硬件、重软件的特性在 L3 级 以上自动驾驶对算法和 AI 能力要求高。视觉主导方案主要依靠摄像头拍摄的画面, 辅以毫米波雷达、超声波雷达等传感器捕捉数据并通过图像处理与机器学习的结合 对周围环境进行计算与分析,最终指导汽车做出决策。由于摄像头、超声波雷达的价 格低廉,因此视觉方案成本优势明显且更易通过车规测试。此外,摄像头所获的图像 数据与人眼感知的真实世界更为相似,形态上最接近人类驾驶,高分辨率、高帧率的 成像技术也使得感知到的环境信息更为丰富。然而,摄像头在黑暗环境中感知受限, 精度及安全性有所下降。且由于视觉方案在硬件要求降低的背景下,其对软件的要 求明显提高,即需要依靠强大的算法才能保证图像处理以及命令下达、处理的效率。在 ADAS 阶段,决策权仍在在驾驶员手中,其对汽车的软件算法要求相对较低,以 Mobileye 为代表的视觉方案被多数整车厂采用。然而,随着智能驾驶迈向 L3 及以 上,自动驾驶平台将接替人的大脑进行驾驶决策,对算法和AI的能力要求明显提升, 目前仅特斯拉、百度、Mobileye 等具备软件和算法基因的厂商完全采用或兼顾视觉 方案。纯视觉解决方案多以黑盒方案为主,且 L3 及以上自动驾驶升级难度大,传统 整车厂搭载意愿不强。

特斯拉凭借“影子模式”与超强算法构筑自动驾驶迭代闭环,其他车企难以复制。特斯拉对汽车的定义是极简化、科技化,其一直在汽车上做减法,对车辆线束长度、 零部件数量、生产制造工序都进行大幅下调。在感知方案的选择上,特斯拉贯彻成本 更优的视觉方案,在 Model3 上采用 12 个超声波雷达、8 个摄像头和 1 个前置雷达 收集周边信息,通过其强大的融合算法迅速构建车辆周边的 3D 模型,在汽车行驶中 做出快速决策。由于 2D 图像对物体的左后角的检测(车长的判断)存在一定盲区, 车辆尾部的倾斜与向上收窄的设计加剧了对整体宽度的低估,因此,视觉方案的关 键便是通过算法根本上解决视觉信息的准确处理,将摄像头捕捉到的 2D 平面图像转 换成精确的 3D 模型。特斯拉在自动驾驶领域的全栈自研以及其在“模式识别模型” 领域的领先地位(即数据规模庞大、数据覆盖多样及数据场景真实)成为其贯彻视觉 融合方案的护城河。此外,特斯拉的“影子模式”可有效控制算法训练成本,这一模 式下数据搜集系统如实时跟随驾驶员的“影子”,始终观察外部环境与驾驶员的动作。若在某个特定场景中驾驶员的操作与“影子”的预判不符,则此次数据会传输到特斯拉的服务器中,对算法进行修正性训练,在下次同场景时予以更正。

百度、Mobileye 采用前装&视觉、Robotaxi&激光雷达的双线并行策略,优化其感知 效果。

在前装领域,全球 AI 算法领先企业百度于 2020 年 12 月推出名为 Apollo Navigation Pilot(ANP)的“轻传感器、轻算量、强感知”视觉方案。据百度于 CVPR 的数据,该 ANP 可支持最高 10 路摄像头输入数据以及 200 帧/秒数据量的并行处 理,单视觉链路最高丢帧率能够控制在 5‰以下,实现全方位 360°实时环境感知, 前向障碍物的稳定检测视距达到 240 米。与此同时,百度配备了 30+的深度学习网 络,在单卡算力不超过 30TOPS 的前提下可实现复杂城市道路的 L4 级别辅助驾驶。

在成本不敏感的 Robotaxi 领域,百度选择拥抱激光雷达,目前已宣布将与禾赛共同 研发新一代激光雷达产品并将其搭载于第五代 Robotaxi 上。另一方面,以纯视觉传 感器方案闻名的 Mobileye 通过 7 个长距摄像头和 4 个泊车摄像头打造了自己的视觉 方案。其中,前置摄像头处于主要感知位,具备 120 度、800 万像素性能,前、后则 共布置 4 个角摄像头,侧后视镜、前后保险杠提供 190 度的广角摄像头。这些感知 摄像头与数据处理端的 2 个 EyeQ5 芯片组成了 Mobileye 的纯视觉系统方案,支持汽 车安全地行驶在错综复杂的城市环境中。与此同时,公司亦宣布旗下 Robotaxi 将与 著名激光雷达厂商 Luminar 合作,通过激光雷达、雷达与摄像头的配置综合提升其 无人驾驶的感知精确程度,提高车辆行驶安全性与可靠性。

 

1.3、 激光雷达融合方案大势所趋,千亿级蓝海亟待挖掘

激光雷达融合高精地图方案可有效弥补视觉方案环境依赖度高、算力需求大、探测 距离短的缺陷,其性能优势十分贴合整车厂追求高阶自动驾驶的需求。激光雷达方 案即在原有感知器件的基础上增加激光雷达以完成对道路、车辆信息的探测。激光 雷达通过发射激光束来测量视场中物体轮廓边沿与设备间的相对距离,进而将捕捉 到的轮廓信息组成点云,并绘制出 3D 环境地图再传输到系统进行分析并下达车辆行 驶指令。激光雷达有效弥补了视觉方案环境依赖度高、算力需求大、探测距离短的缺 陷,实现了全天监测,其性能优势贴合整车厂迫切追求高阶自动驾驶的需求,大多整 车厂已将激光雷达归为面向 L3 及以上不可或缺的感知器件。2021 年 4 月,华为携 手北汽蓝谷率先在极狐阿尔法 S HI版车型上搭载了3 颗华为自研的 96线激光雷达, 可实现城区十字路口、城区行人及高速车辆的实时检测。据华为智能汽车解决方案 官微消息,华为已建立第一条车规级激光雷达的 Pilot 产线并按照年产 10 万套的节 奏推进,以适应未来大规模量产需求。此外,华为还与长安签订合作,共同打造长安 高端智能汽车品牌 CHN,将预留 5 个激光雷达传感器,加速其迈向高阶自动驾驶的 速度。

与此同时,作为传统主机厂的大众业已携手激光雷达制造商 Aeva,赋能旗下保时捷、 奥迪两个高端品牌。Aeva 研发的 4D 激光雷达售价不超过 500 美元,水平方向可扫 描 120 度,垂直方向上可扫描 30 度,最远可识别距离 300 米远的物体。据 OFweek, Aeva 的激光雷达已在慕尼黑试点的奥迪 E-Tron 上装载。造车新势力方面,小鹏与大 疆孵化的全资子公司览沃 Livox 合作,后者根据车规级要求专为小鹏 P5 打造的激光 雷达浩界 Horiz 已前装上车,探测距离可达 150 米(针对 10%反射率目标物),点云 密度提升近 2 倍。其中 ROI(Region of Interest,感兴趣区域)区域的点云密度将在 没有增加额外激光发射器成本的情况下提升至积分时间 0.1 秒下的等效 144 线水平, 助力小鹏 XPILOT 自动驾驶辅助系统更加游刃有余地应对高速公路、城区道路等场 景下远处障碍物的超前检测。

 

激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

 

ADAS、无人驾驶成为激光雷达下游主要应用场景,激光雷达市场空间广阔。激光雷 达下游应用领域广泛,主要可分为无人驾驶、高阶辅助驾驶、服务机器人和车联网行 业。随着激光雷达在车载领域的推进,针对测试与高精地图测绘领域的激光雷达市 场将迎来顶峰,乘用车前装量产成为未来主要发展方向。据 Frost&Sullivan 预测, 2025 年高级辅助驾驶、无人驾驶、车联网和服务机器人领域分别占激光雷达市场总 规模的 34.64%、26.30%、33.81%和 5.26%。2025 年全球激光雷达市场规模将达 135.4 亿美元(折合人民币近 1000 亿元),2019-2025 年 CAGR 为 64.5%。与此同时,据我 们测算,2025 年国内面向 L3 及以上的前装高线束车载激光雷达市场规模将超 100 亿 元。考虑到高阶自动驾驶渗透率仍然较低,且无人机、车联网等领域的应用需求有望 随激光雷达成本下降而持续提升,未来我国激光雷达市场将超千亿。

 

激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

 

2、 过车规、降本节奏加快,激光雷达前装量产元年已至

2.1、 技术路径:机械式向固态式演进,转镜方案趋于成熟

激光雷达分类多样,可根据测距方式、发射、光束操作、探测方式、探测器种类与数 据处理方式等不同角度进行分类。目前常见的方式主要有:按测距方式分为飞行时 间法(Time of Flight,ToF)、不基于时间法;按光束操作方式,分为扫描式与 Flash 面阵式,其中扫描式可按实现方式分为机械式、MEMS、转镜、固态 OPA 等。以飞 行时间测距法与以 FMCW 调频连续波测距为代表的非基于时间法均可实现室外阳 光下较远的测程(100~250 m),是当下的主流研究方向。

 

2.1.1、 扫描方式:机械式向固态式演进,短期内混合固态有望前装量产

从扫描方式看,激光雷达分为机械式、半固态和固态式,整体技术由运动式向固态演 进,激光雷达呈现体积小型化、部件固态化趋势。

机械式激光雷达生产成本居高不下、寿命较短,难以面向前装量产。机械式激光雷 达的激光发射部件在竖直方向上排布成激光光源线阵,并通过透镜在竖直面内产生 不同指向的激光光束;在电机的驱动下持续旋转,达到 3D 扫描的效果。机械式激光 雷达是最早应用于智能驾驶的激光雷达产品。Velodyne 是生产机械式激光雷达的代 表企业,其旗下产品包括 32 线激光雷达 HDL-32E、64 线激光雷达 HDL-64E 等。近期推出的 128 线激光雷达 VLS-128 相比于 HDL-32E 尺寸缩小 70%,探测距离增 大 1 倍,分辨率提高 4 倍;从技术性能来看,VLS-128 在探测距离和分辨率上已超 越市场上现有产品。尽管如此,由于机械式激光雷达内部结构精密,零件数多、组装 工艺复杂、制造周期长,生产成本始终居高不下。此外,据亿欧咨询,机械式传感器 平均失效时间为 1000 小时至 3000 小时,而汽车厂商的要求则是至少 13000 小时。因此,机械式激光雷达难以面向前装量产。

 

激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

 

混合固态激光雷达可以分为转镜式、棱镜式与微振镜式(MEMS),MEMS 方案因轴线寿命短暂等原因难以上车,转镜方案短期放量可期。

转镜式激光雷达的工作特 点是保持收发模块不动,以电机带动镜片旋转,并将光束反射至空间的一定范围,从 而实现扫描探测。Ibeo、Valeo 深耕转镜式激光雷达研发多年,2010 年 Valeo 与奥迪 展开合作,并在 2017 年奥迪 A8 上搭载了第一代 SCALA 4 线激光雷达。极狐 HBT 车型上的华为激光雷达同样采用转镜方案。

棱镜式激光雷达与转镜式方案相近,主 要通过两个旋转的棱镜改变光路,从而减少激光发射和接收的线束,随之降低对焦 与标定的复杂度,大幅提升生产效率与良率。需要强调的是,棱镜方案采取非重复扫 描技术,大疆 Livox Mid-40 首先应用。其探测距离可达 150 米、横向视场角 120 度、 角分辨率 0.16 度 X0.2 度,点云密度等效于 144 线激光雷达。短期来看,转镜与棱镜 的混合固态方案获车厂青睐可能性更高。

 

激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

 

MEMS 激光雷达通过硅基 MEMS 微振镜改变单个发射器的发射角度并由此形成面阵的扫描视野。与传统的金属机械结构部件相比,MEMS 方案可有效解决机械式激 光雷达因内部旋转模块体积和重量较大,在惯性冲击下损耗零部件的痛点。然而, MEMS 在技术上存在缺陷。由于离轴方案需要采用 APD 阵列做接收,在成本端造成 压力的同时也增加了系统的复杂程度。目前市面上硅基 MEMS 激光雷达大多采用结 构紧凑的同轴方案,对其材料的耐用性产生巨大挑战。MEMS 的内部是小尺寸的悬 臂梁结构——反射镜悬浮在前后左右各一对扭杆之间以一定谐波频率振荡,达到反 射激光器光线的目的。然而在实际工作中,两对扭杆同时对微振镜进行反向扭动,在 外界的振动或者冲击下快慢轴极易断裂,其使用寿命大多在几个月内。受限于此, MEMS 激光雷达过车规的难度明显提升。

 

激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

固态激光雷达主要包括 Flash 与 OPA 两类,其扫描速度快、尺寸小,但扫描角度有限且容易形成旁瓣。

(1)Flash 激光雷达:原理是快闪,其在短时间直接发射出大片 覆盖探测区域的激光,再以高度灵敏接收器完成对环境周围图像的绘制。Flash 需要 处理海量像素,易受干扰,会损失一部分的探测精度,远程探测难度较高。此外,由 于 Flash 激光雷达需要一整个面而非小的窗口进行接收,在此过程中会引入较多环境 光噪声,信噪比较差。

(2)OPA 激光雷达:通过施加电压调节每个相控单元的相位 关系,利用相干原理实现发射光束偏转,从而完成在一定空间内的扫描测量。OPA 技 术电子化明显,其通过调节发射阵列中每个发射单元的相位差来改变激光的出射角 度,而非机械式旋转出射。Quanergy 研发的 OPA 式 Solid State 激光雷达采用光学相 控阵列、光学集成电路、远场辐射方向图等核心技术,将尺寸缩小至 90mm X 60mm X 60mm。然而,目前的 OPA 激光雷达在光栅衍射时除了中央明纹外还会形成其他 明纹,使得激光在最大功率方向以外的地方形成旁瓣,进而影响光束作用距离和角 分辨率,分散激光的能量。

 

激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

 

激光雷达固态化后稳定性高、成本低,芯片将取代机械部件成为控制固态激光雷达 的主要器件。芯片主要存在于激光雷达信息处理模块,包括 FPGA 芯片与用于搭建 激光雷达系统中发光控制、光电信号转换,以及电信号实时处理等关键子系统的模 拟芯片等。由于固态部件能避免旋转带来的不稳定性,减少使用过程中的损耗,更易 满足车规要求等,激光雷达芯片化逐渐成为厂商研发主流趋势之一。此外,芯片化与 成熟的半导体工艺(如 CMOS 工艺)可以真正实现激光雷达成本降低,将整车激光 雷达成本由万元级别降到千元级别,由此达到批量应用的目标。例如,2018 年初, 深圳镭神智能首款用于激光雷达接收端的模拟信号处理芯片研发成功。与传统激光 雷达芯片不同,该款芯片大量实现了功能集成,镭神智能将高频高带宽模拟晶体管、 放大器等集成到体积小巧的芯片中,用单枚芯片实现激光雷达整体控制,大大缩小 激光雷达信号处理电路的体积与功耗。作为国内首款高集成度激光雷达接收端模拟 信号处理芯片,量产后将有效降低全行业成本。国内苏州长光华芯建成投产了国内 首条具有完整生产工艺的 VCSEL 芯片生产线,提供 850~940 nm 波段的 VCSEL 产 品,适用于飞行时间(ToF)和结构光(Structured light)的方案。

除自研以外,芯片厂商与激光雷达厂商也通过收购、投资等方式快速切入激光雷达 芯片细分赛道。2016 年 10 月,英飞凌全资收购了荷兰的 IC 设计公司 Innoluce,目的是利用 Innoluce 的技术专长,为高性能激光雷达系统开发芯片和组件,同时降低 激光雷达的成本。华为分别投资了纵慧新光与南京新视界,意在深入 VCSEL 芯片与 SPAD 的研发,加强自身在激光雷达收、发模块的集成能力。英伟达也通过收购瑞典 初创公司 OptiGOT,完成自身在 VCSEL 上的布局。除 VCSEL 部件外,Luminar 将 目光投至接收器,通过收购芯片设计公司 Black Forest Engineering 进行以铟镓砷为原 材料的接收器研发,并已成功通过 ASIC 等方式大幅减少了铟镓砷在其中的用料,将 整个接收器成本降低至 3 美元。

 

2.1.2、 测距方式:ToF 为主,具备 4D 高感知精度的 FMCW 逐渐受到关注

ToF 测速快、抗强光干扰能力突出,是当下的主流方案。ToF 测距式激光雷达是以激 光作为信号源,由激光器发射出的脉冲激光打到周围物体上引起散射,通过接收器 接收光波反射时间进行测距。在此过程中,随着激光不断扫描目标物,并进行成像处 理汇总后,可得到精确的三维立体图像。ToF 测量速度快,且通过高峰值的激光测量, 其抗强光干扰能力突出。然而,ToF 法测距分辨率提升难度,且存在信噪比低、安全 性较低的问题,FMCW 技术逐渐受到关注。

FMCW 激光雷达可提供 4D 高精度感知及毫瓦级低峰值功率,较 ToF 技术优势明 显。非基于时间的激光雷达测距方案主要有调幅连续波(AMCW)与 FMCW 技术。AMCW 以调制波为基础,其不包含尖锐的脉冲,技术的实现上具备成本优势。但是 由于 AMCW 采用连续光波调制,因此在远距离探测时需要较大的光功率,尤其在 百米级探测距离下将可能存在人眼安全隐患。而 FMCW 以调频波为基础,可以根据 波的频率计算目标物体的速度,相对于 ToF 天生增加了速度信息,达到 4D 感知的效 果。具体而言,FMCW 可以测量每个像素的径向速度,而在 ToF 中像素速度信息需 后续测量,在运动轨迹模糊的情况下难以获取。此外,据卖姆斯咨询,FMCW 技术 可在短波红外波段中将所有元件集成在单子光子芯片上。既保证片上波导在 1550nm 波长下低损耗,也可以约束激光峰值功率水平在 100 毫瓦范围内(对应 ToF 的峰值 功率为千瓦级别)。目前 FMCW 技术仍处于探索阶段,代表性公司如 Blackmore、 Aeva、Bridger Photonics 已分别获得宝马、丰田、蔡司等产业链巨头的投资。未来, 具有高灵敏度、低发射功率的 FMCW 相干激光雷达有望逐渐得到普及。

 

2.2、 车规认证:激光雷达从 0 到 1 的关键

车规认证难度高,周期长,挑战激光雷达厂商研发能力。对于激光雷达厂商而言,要 想切入 Tier1 的供应链,需具备两个条件:

(1)获得由北美汽车产业所推的 AECQ100(IC)、101(离散元件)、200 (被动零件)可靠度标准;

(2)符合零失效(Zero Defect) 的供应链品质管理标准 ISO/TS 16949 规范(Quality Management System)。

不同于消费 电子产品,汽车会在高温、高寒、潮湿等苛刻环境中长期行驶,其设计寿命、迭代周 期大多在 10 年以上。因此,应用于汽车上的零部件必须通过严苛而复杂的车规级测试。例如,针对汽车长期处于暴露状态,受天气、温度影响很大的特点,老化试验模 拟恶劣环境,在零下 40 摄氏度至 85 摄氏度的温度下,令零部件连续运行 1000 小时, 以判断其性能。而消费类产品测试通常仅在普通温度下测试 48 小时,可见车规级测 试对生产厂商技术研发挑战的难度之大。根据各公司官网,当前通过车规的激光雷 达仅有四款,其中法雷奥 Scala2、华为 HI 方案激光雷达、镭神智能 CH32 均采用了 转镜方案,大疆 Livox 则为棱镜方案。

 

2.3、 降本增效:华为、大疆入局拉动激光雷达成本降至万元以内

激光雷达主要分为激光发射模块、扫描系统、接收模块及信息处理四个部分。其中, 发射模块包括激励源、激光器、光束控制器与发射光学系统;扫描系统通过旋转电 机、扫描镜、准直镜头与窄带滤光片等形式实现改变激光束的空间投射方向的功能 (Flash 激光雷达方案不包括扫描方案);接收模块则主要为光电探测器;后端信息 处理部分则与放大器、FPGA(主控单元)芯片、模拟芯片密不可分,其主要实现对 激光发射模块、接收模块和扫描模块的控制以及数据处理和传输。据汽车之心数据, 目前激光雷达中的发射与接收模组仍占据了过半成本,人工调试费用也对激光雷达 的成本具有较大影响。

 

激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

 

激光器是车载激光雷达发射系统的核心器件之一,VCSEL 将逐渐取代 EEL 成为主 要的激光元器件。激光器的选择需综合考虑实际应用环境、技术方案、性能需求以及 成本需求。目前常见的激光器主要包括半导体边发射激光器(EEL)、半导体垂直腔面 发射激光器(VCSEL)以及光纤激光器等。EEL作为光源具有高发光功率密度的优势, 但 EEL 激光器发光面位于半导体晶圆的侧面,生产中需进行切割、翻转、镀膜、再 切割的工艺步骤,往往只能通过单颗一一贴装的方式与电路板整合。与此同时,每颗 激光器需独立手工装调,对产线工人的手工装调技术依赖性较大,生产成本高且一 致性难以保障。VCSEL 是一种垂直表面出光的新型激光器,其制造工艺与 EEL 相近 且具备规模化量产的可能性。VCSEL 的生长结构与芯片级二维 VCSEL 阵列更为契 合,在提高输出功率的同时还为设计各种复杂结构的点阵光源提供可能。近年来,国 内外多家 VCSEL 激光器公司纷纷开发多结 VCSEL 激光器,将发光功率密度提升了 5~10 倍。未来,VCSEL 有望逐渐取代 EEL 成为主流激光元器件。

光纤激光器采用探测距离远、人眼安全性高的 1550nm 波长激光,逐渐获厂商青睐。 人眼安全性高是 1550 nm 激光光源的显著特点。由于 1550 nm 米激光远离人眼吸收 的可见光光谱,相比于 905 nm 激光, 同等功率的 1550 纳米激光人眼安全性提高 40 倍。在相同人眼安全等级的功率下,905 nm 米激光雷达很难在 200 米以外的高速公 路上看到高度为 10 厘米左右的物体,但是 1550 nm 激光雷达可将检测距离提高到 300 米以上。目前,光纤激光器的主要供应商有法国 Lumibird、昂纳以及激光雷达公 司 Luminar、镭神智能等。然而,相较于 905 nm 激光雷达,1550 nm 激光雷达在光 源成本、体积以及供应链成熟度上仍有一定缺陷。在成本压力下,目前激光雷达厂商更倾向于选择使用硅材料制造接近于可见光波长的 905nm 的激光雷达,并严格限制 发射器的功率,避免造成眼睛的永久性损伤。由于接收功率将随着距离的增加而减 小,不同光源波长需要配合使用的探测器也不同。硅基光电探测器通常用于探测 905nm 波长的激光,而铟镓砷(InGaAs)近红外探测器则多用于探测 1550nm 的激光, 目前仍然以低成本硅基光电探测器为主。

 

2.3.1、 光电优势推动华为激光雷达成本大幅降低

华为启用“爬北坡战略”,凭借自身光电优势,大幅提升激光雷达性能,前融合感知 技术进一步简化算法,降低误判。华为自 2016 年开始研发激光雷达,启用“爬北坡 战略”直接生产面向前装量产的中长距激光雷达。相对于传统方案,华为激光雷达的 优势在于有效距离、FOV 显著提升。其他厂商对反射率数据披露较少,华为激光雷 达则明确标注反射率 10%。据佐思汽研,在 10%反射率下的有效距离较传统方案将 大幅提升。与此同时,为提高激光雷达方案下感知环节与整车的适配性,华为引入了 前融合感知技术,即在原始层将数据融合在一起,并在此基础上开发感知算法,对融 合后的多维数据进行综合感知,最后将结果输出。不同于后融合感知算法中每个传 感器各自独立感知,前融合感知能有效结合所有传感器原始数据,在前端率先完成 数据融合,实现数据间互补,大幅降低误判。此外,前融合感知技术可大幅提升目标 识别概率,简化算法,为汽车提供足够安全冗余,在前融合及激光雷达的双重助力 下,极狐阿尔法 S HI 版的自动驾驶能力得到业界广泛认可。

华为凭借在光电领域的深厚积累,以激光雷达 Tier1 身份广泛投资光电半导体企业, 赋能国内 Tier2,推动国产供应链崛起。华为采用转镜方案降本的关键在于其在光电 领域多年的技术积累已形成领先优势,规模化采购激光发射器和接收器的成本亦比 传统激光雷达更低。基于此,华为以激光雷达 Tier1 身份投资了鑫耀半导体、裕太微 电子、纵慧芯光、南京芯视界、炬光科技(拟上市)等多家国内 Tier2 供应商。其中, 鑫耀半导体(目前哈勃投资持股 23.91%)主要产品包括砷化镓单晶片、磷化铟单晶 片等 III-V 族半导体衬底片,是垂直腔面发射激光器(VCSEL)、光通信用激光器和 探测器的必备原材料。美股已上市激光雷达企业 Luminar 激光雷达产品采用的 1550nm 光源即为磷化铟材料;纵慧芯光为华为 ToF 光源的主供应商,拥有自己的外 延产线和封测产线。据 eefocus 数据,公司外延产线可实现 500-1000 片/月的产能, 对应于产出的 VCSEL 芯片产能达到 20kk-40kk/月。公司目前已获华为、小米产投等 多轮投资。未来,华为将有望凭借自身在制造业积累的产品、质量、成本、渠道等优 势赋能国内 Tier2 加速崛起。

 

2.3.2、 大疆另辟蹊径拥抱棱镜方案,电机调控、先进封装技术领先

无人机龙头厂商大疆孵化览沃科技(Livox)入局激光雷达,非重复扫描方式叠加棱 镜方案有效降本。大疆于 2016 年成立览沃科技,经过三年潜心研发,2019 年起开始 对外发布产品,目前共有 Mid、Horizon 和 Tele 三个系列产品,并于 2021 年与小鹏 合作,为其定制打造了车规级激光雷达 Livox HAP。大疆采用棱镜式扫描方案,利用 电机带动一边薄一边厚的透明玻璃进行旋转,实现扫描。这与 MEMS 微振镜方案及 转镜式方案形成显著差异,后两者均采用了厚度均匀的薄反光镜,围绕悬梁臂或转 轴旋转。而在棱镜式方案下,激光光线发射后会在一边薄一边厚的透明玻璃上发生 偏折,从而在较少的模组拼接内实现更大的 FOV,进而提升点云在高温、振动等恶 劣环境下的稳定性与可靠性,降低分层、错位等问题。此外,棱镜方案亦是大疆激光 雷达降本的关键,该方案有效减少了收发单元的数量,相应降低成本以实现一帧之 内更高的线数。据大疆及九章智驾,HAP 的激光发射器和接收器仅有 6 个,高速旋 转的棱镜通过折射,最中间 ROI 区域可形成“等效 144 线”的效果。此外,大疆还 研发了非重复扫描方式以提升扫描效率,在 FOV 范围内,激光束每一帧的扫描曲线 都会发生微小的偏移,从而实现在 FOV 范围内扫描多次。其扫描的区域面积会随着 时间增大,达到近 100%的视场覆盖率,在同等价位下领先于行业其他产品。

 

激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

 

大疆凭借多年在无人机领域技术积累赋能激光雷达,电机精准调控叠加自动化产线 构筑护城河。全球除大疆外鲜有尝试棱镜方案的厂商,其原因主要在于该方案对光 学、机械能力要求严苛。具体而言,电机的寿命跟转速负相关,即转速越高,电机的 寿命就越短,提高转速的同时维持电机寿命是亟待考虑的问题。而棱镜方案较转镜 等其他方案对电机转速要求更高,进而对轴承的鲁棒性提出更高要求。作为无人机 龙头厂商的大疆,其为保证无人机的稳定飞行,对高速旋转电机进行精准调控是技 术关键。大疆每台无人机上有 6-7 个精密小型电机做飞行动力输出和云台增稳,年均 数百万台的出货量为大疆在电机转速的控制、可靠性、轴承方案、上游供应链管理等 方面积累了丰富经验。HAP 激光雷达沿袭了大疆无人机中的电机技术,导入了小轴 承方案,降低线速度,其轴承直径只有 5mm,为其工规级产品的六分之一,在转速 不变的前提下,寿命的提升不止 6 倍。此外,大疆自有专利的封装技术“DL-PACK 全气密性封装”,即通过半导体封装工艺把发射器(3mm*4mm 的小芯片)和接收器 分别进行封装,提升对焦便利性,解决过往因器件多、对焦困难而导致良率较低、产 品隐性成本抬升的问题。此外, Livox 未来将加强激光雷达的自动化生产水平,单台工站的茶能将提升至 40 颗/小时,单条产线年产能可达 20 万颗。我们认为,激光 雷达完成从 1 到 N 的关键在于降低成本的同时进一步提升性能。当前,华为、大疆 已率先入局,为市场展示了性能卓越的激光雷达,其成本业已下探到万元以内,激 光雷达前装量产元年已至。

 

(本文仅供参考,不代表我们的任何投资建议。如需使用相关信息,请参阅报告原文。)

 

全文完。感谢您的耐心阅读,请顺手点个"在看"吧~

 

 

— THE  END —

 

更多财经资讯,报告请关注公众号[行业报告研究院],点击下方卡片即可关注,有你想要的

 

原文始发于微信公众号(行业报告研究院):激光雷达行业研究:智能汽车之“眼”,千亿蓝海市场开启

欢迎加入激光雷达产业链微信群

作者 ab

zh_CNChinese