光学类器件在硬件层面,整车企业其实是需要考虑车辆外观设计、系统结构、空间等多方面的限制,所以我们看到目前车的前脸上,有激光雷达、毫米波雷达等多种部件,把不同传感器集成在一起,如果还能集中在原本可以放光学部件的地方——受到很好保护的车灯里面,这个事情就很有价值了。

图1 Fraunhofer的概念设计

图2 从逻辑来看,Tier1的硬件整合,使得灯和Lidar之间的合作会更深入

Part 1:XenomatiX和Marelli的光学整合

这两家公司虽然都是主营光学产品的,但不是同一个细分领域(感知和照明)——其中XenomatiX是提供固态激光雷达解决方案的公司,其设计和构建的产品(包括软件)能够实现精确的实时4D-6D数字化,有助于了解车辆周围环境;Marelli公司的产品组合包括激光、LED矩阵、数字前照灯和OLED尾灯等产品。之前Marelli与XenomatiX达成协议,将激光雷达与汽车照明融合在一起,这种合作是典型的共同探索“异构”整合。

图3 Marelli 展示的Smart Corner™

从整体来看,目前对于车身布置工程师来说,需要在汽车上大量安装的更多传感器,包括激光雷达等,而这些结构造成了不必要的突出造型和处理车身结构部件的空间限制,对于“让车辆做得好看”的造型方面产生了重大的集成挑战。还有一个非常重要的问题,这些光学类部件基本都不耐清洁,对于lidar和radar都需要应对各种天气和车辆使用状态,因此配合灯光系统原有的清洗和诊断,就可能成为一个新的路径——

将传感器集成到照明元件和系统中,利用车企原有对于车灯系统的位置和优先考虑,这些都可以为将来大量的传感元件提供畅通无阻的视野。

集成了摄像头以后,通过软件算法可以根据检测的图像来判断是否受到泥浆、散射光(雾)、外部光源的污染。而底层的程序,可以在集成总成里面固化一些确定的污垢检测与高效清洁的基础算法。

Part 2:Fraunhofer的Multispectral Headlamp

在Fraunhofer的基础研究中,不光是对整体的灯光系统进行设计,也可以通过多光谱 CMOS 视觉传感器 (MFOS) 的集成,来对关键环境参数(雾、雨等)进行检测。

图4 Fraunhofer的liadr、LED和radar的集成化感知和光路概念设计

目前来看,车企尝试把激光雷达放在了各个位置,包括B柱的顶部或底部、后窗后面、侧视镜中、车顶下的传感器条中、转向指示灯中。激光雷达从之前的“大个子”不断小型化——更小的尺寸是易于集成的基础,通过不同的位置,可以有效的把各个整车需要感知的FOV(视场角)覆盖全,类似于谷歌做的360度的机械式激光雷达那样。

图5 整合的思路

小结:

激光雷达将会在今后相当长一段时间里面,在自动驾驶辅助系统里面起到关键的作用,车企如何有效的布置FOV也成了不同车型的难点。用同样数量或更少的传感器做更多的事情,这是特斯拉走纯视觉的思路。随着激光雷达不断提升的技术能力,能有效清晰的探测整个场景而不受距离或功率的限制;同时采用灵活的模块化设计,提供不同视野、不同范围、不同分辨率和帧速率,关键还是在半导体的激光源及探测器的技术发展,整个集成确实是硬件的加法。汽车技术的革新能力在器件和软件层面,Tier 1我相信是越来越集中,越来越讲究深度的知识,比如光学领域的融合。

图|网络及相关截图

作者简介:朱玉龙,资深电动汽车三电系统和汽车电子工程师,著有《汽车电子硬件设计》。

作者 li, meiyong

zh_CNChinese